

Tetrahedron Letters, Vol. 35, No. 52, pp. 9701-9702, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)02128-7

## Reactivity of Iodine Monofluoride on Sub-Micromolar Scale with Arenes

Oliver Thinius, Klaus Dutschka, \*Heinz H. Coenen

AG Nuklearchemie und Radiopharmazie, Universitätsklinikum Essen, Hufelandstr. 55,

45122 Essen, Germany

Abstract: In situ generated iodine monofluoride (1F) has for the first time been used on sub-micromolar scale for iodination of model arenes. Reactivity and selectivity of the reagent have been determined by the radiotracer method using  $[^{123,131}]$  [IF.

Iodine monofluoride (IF) has been known on molar scale since the early 1960s<sup>1</sup>; however, its use as iodination reagent for aromatic compounds on this scale has only been reported in recent years<sup>2</sup>. We have used *in situ* generated [<sup>123,131</sup>I]IF on sub-micromolar scale for radioiodination experiments with benzene, anisole, phenol, and toluene as indicated by the equations.

\*I<sup>-</sup> + F<sub>2</sub> + F<sup>-</sup>

\*IF + (()) + HF

Fig. 1  $R = -H_1, -CH_3, -OCH_3, -OH.$ 

A 10% mixture of elemental fluorine and neon was handled in a monel apparatus. CAUTION: elemental fluorine is highly corrosive<sup>3</sup>. The reagent \*IF was generated by passing fluorine through a solution of nocartier-added radioiodide. Afterwards a solution of the arene in the same solvent was added, with a final arene concentration of  $8 \cdot 10^{-7}$ M. Various solvents like water, trifluoroacetic anhydride and trifluoroacetic acid (TFA) have been tested, with TFA being most successful. After 10 minutes at a selected temperature between -70°C and +60°C the reaction was stopped by evaporation of the solvent and addition of 1 ml of HPLC solvent containing 1 mg/ml sodium sulfite. Product analysis was carried out against "macroscopic" reference substances using HPLC with radioactivity- and UV-detection. As expected, the reactivity of iodine monofluoride proved to be very high, thus leading to high chemical yields of monoiodo compounds in the case of medium-activated anisole and to high yields of by-products in the case of more activated compounds. Even less activated compounds can be iodinated successfully where other iodine monohalides (ICl, IBr) fail, while no yield was observed with benzene.

| Arene   | Radiochemical yield<br>monoiodoarenes [%] | Radiochemical yield<br>by-products [%] |
|---------|-------------------------------------------|----------------------------------------|
| Toluene | 11±2                                      | 0                                      |
| Anisole | 66±4                                      | 30±3                                   |
| Phenole | 27±3                                      | 41±5                                   |

 Table 1.
 Radiochemical yields of iodination of arenes with IF.

Conditions: 15  $\mu$ mol F<sub>2</sub>, room temperature, 10 min reaction time, arene concentration 810<sup>-7</sup>M

The relative reactivity with a para-to-ortho ratio (per position) of about 45 for anisole and 3.5 for phenol (at 20°C in TFA) exhibits a high selectivity for the para-position which is in contrast to direct electrophilic iodination in aquaeous solutions. Iodine monofluoride on sub-micromolar scale proved to be stable even at 60°C (radiochemical yield of monoiodoanisoles:  $68\pm5\%$  at +60°C) although a decomposition temperature of -14°C has been reported<sup>4</sup> (yield of monoiodoanisoles  $45\pm3\%$  at -15°C). This might be attributed to a stabilizing effect of TFA. Different to other radioactive iodine monohalides, generally obtained by equilibration of radioiodide and iodine monohalide, the generation of \*IF without addition of stable iodide allows preparation of products of high specific activity. This is especially important in synthesis of radiotracers for studies in life sciences. The consecutive generation of \*IF in TFA and subsequent addition and reaction of the arene might also prove successful for preparative monoiodination on an equimolar scale of radioiodide and oxidation agent F<sub>2</sub> in contrast to previously used in situ oxidation in presence of the arene, thus avoiding fluorination side reactions.

## References

- 1. M. Schmeisser, E. Scharf, Angew. Chem. 1960, 72, 324.
- 2. S. Rozen, D. Zamir, J. Org. Chem. 1990, 55, 3552-3555.
- 3. Matheson Co. Inc. Ed.: Matheson Gas Data Book, Matheson Inc. Co., Rutherford N.J., 1971.
- 4. M. Schmeißer, P. Sartori, D. Naumann, Chem. Ber. 1970, 103, 880-884.

(Received in Germany 14 October 1994; accepted 26 October 1994)